STABILITY OF A STRUCTURAL INTERMEDIATE WITH AN INCORRECT PROLINE ISOMER ON THE REFOLDING PATHWAY OF RIBONUCLEASE A

Franz X. Schmid

Institut für Biophysik und Physikalische Biochemie, Fakultät für Biologie und Vorklin. Medizin, Universität Regensburg, D - 8400 Regensburg

Quantitative stability data for a structural intermediate on the refolding pathway of ribonuclease A (RNAase A) have been determined and compared to the stability of the fully native protein. The investigated folding intermediate ${\bf I}_{\rm N}$ has previously been characterized as a native-like molecule, which contains at least one proline peptide bond in the incorrect configuration. The outline of the experiments is as follows. (i) The intermediate I_{M} is populated transiently by an interrupted folding experiment under "strongly native" conditions. (ii) The resulting reaction mixture is exposed to increasing concentrations of guanidine · HCl (GuHCl) to detect the stability of the ${
m I}_{
m N}$ molecules towards unfolding induced by GuHC1. The experiments yield an unfolding transition of $\mathbf{I}_{\mathbf{N}}$ as well as of native RNAase A (N). Employing these unfolding transition curves, the difference in stabilization energy between \boldsymbol{I}_{N} and the native protein, N, $\&\Delta$ G (N-I_N) is calculated to be 1.7 kcal/mol at 2.9 M GuHCl. In a theoretical study Levitt (1) provided a classification of proline residues on the basis of energy differences between the fully native protein and the folded structure containing the incorrect isomer of a particular proline. According to this model the proline (tentatively pro 93) which is still in the wrong trans configuration in the intermediate I_N is "type II". The energy difference of 1.7 kcal/mol is used to accelerate the rate of proline isomerization in the $I_N \longrightarrow N$ step about twentyfold.

¹⁾ Levitt, M., (1981) J. Mol. Biol., 145, 251.